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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

. TECHNICAL MEMORANDUM 1288

o THE DIFFUSION OF A HOT" ATR JET IN ATIR IN MOTION®

By W. Szablewski

PART II. THE FLOW FIELD IN THE TRANSITION ZONE

SUMMARY

The turbulent diffusion of a hot air jet in air can be divided into
two zones, the core and the transition zone. The first part of this
study (reference 1) deals with the flow field in the core, the second
(the present report) with that in the transitional zone.

Part A of the present report is limited to small temperature differ-
ences., The decrease in the velocity and the temperature along the jet
axis, the breadth of the mixing region, as well as the asymptotic distri-
bution functions, are determined.

The empirical constant K, a measure for the mixing length, appearing
in the theory, follows closely a value of 0.010 for asymptotic conditions,

Experimental data .are available only for the case of outside air at
rest., The comparison with theory indicates that the asymptotic distri-
butions are satisfactorily reproduced with exception of the boundary zone.
Velocity and temperature drop are very closely reproduced by the computed
functions up to a point near the boundary of the core, while a last short
fraction of the region adjacent to the boundary of the core is not covered
by the theory.

Part B of the present report deals with greater temperature differences.
The breadth of the mixing region, as well as the velocity and temperature
drop along the jet axis, is calculated. The theory is then compared with
Pabst's measurements (reference 2). The ratio of interchange of temperature
and velocity yielded a factor E = 2, Considering the friction loss at the
nozzle wall, the agreement between the theoretical and the experimental
velocity decrease along the jet axis can be regarded as satisfactory. The
temperature measurement along the jet axis appears to be faulty.

*"Die Ausbreitung eines Heissluftstrahles in Bewegter Luft."
GDC/246O September 1946,
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A: SMALL TEMPERATURE DIFFERENCES BETWEEN JET
AND SURROUNDING MEDIUM

I. Method and Results

1. In the first part of the investigation (reference 1) the flow
field in the core was computed.

To

The investigation included the varistion of the curves bounding the
mixing zones of velocity and temperature as well as the aspect of the
velocity and temperature distribution functions over the mixing zones.

In the second part, (the present report), the flow field in the
zone adjoining the core is investigated.

core J trensition zone

This zone, which in the asymptote in the so-called axially symmetrical
Jet diffusion is characterized by the affinity of the flow processes in
the cross sections of the jet, is termed the transition zone.
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Variation of mixing width of the velocity and the temperature over the
nozzle spacing -

The following relations are involved:
bq the breadth of the mixing region of the velocity
bo the breadth of the mixing region of the temperature

In addition

B4 temperature rise of the discharging jet
SA temperature rise of the Jjet on Jet axis
Ug velocity of the discharging Jjet

uy velocity of the surrounding medium

EA velocity of the Jjet on jet axis
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core | transition zone

Variation of jet velocity and jet temperature along the jet axis
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2. In the extension of the theory of free turbulence to gases of
w1de1y variable den51t1es, the following turbulent exchange quantities
had been obtained in part I (reference 1).

Bu op
M= g2 20 for turbulent diffusion (1a)
dy|dy
' 2l au| au ;
T=1 + Eua for turbulent shearing stress (1b)
oyl y
=| | d(pcoT
Q = EZE‘%%I[‘K%;E—Z for turbulent heat conduction (1lc)
Y

On the assumption of constant pressure for the diffusion of a hot
air jet in air in motion (axially symmetrical case) the motion equations
were then obtained:

equation of continuity of mass

A(rpa) B(réi) pels)
ox or EG(X) ( Q) (22)
equation of continuity of momentum
d(rpaa) , Nrpv@) _ ¢ ()2 530, Er-ap> (20)
ox or r T or

equation of continuity of the heat (energy principle)

drBid) | Axbid) _ o 3 |.2E)
ox ¥ or e (X)ar {_ or ] (2¢)

with the apparent kinematic viscosity

e (x)

= Kbj [Umax - 1—l-m:’Ln‘
Owing to the continuity of mass, it further yields:

momentum

arﬁﬁ(ﬁ "'u]) . Brfﬁr(ﬁ - ul) _ G(x)g_r E@M + Er(l_l - u1> S—B]
- r

X dr
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Heat

- drpud | Orpv¥ _ ,ﬁ D 5(55)]
- o ..0x _+ or - EKX)ar,_ -

(3 = temperature rise of jet.)

Integration with respect to T gives then for the transition zone:

momentum
R 1 a3 - . 3% |
rpv(u - ul> - g—x- ‘/\b pufua - ul>r dr = e(x)rl:p—-(u'Trﬂ-2 + E(u - u1>a%:] (32)
r
heat
2
PVy - = pdr dr = Ee(x)r 8—(53) (3b)
ox |y ar

with €(x) = Kbl<ﬁA - uy) .

Momentum and heat law can be physically interpreted as follows:

On marking off a control area in the mixing zone in the manner
indicated above, the momentum theorem states that the loss of momentum,
B which the flow experiences on its passage through the control area, finds
its equivalent in the turbulent shearing stress
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at point r. Correspondingly the heat balance goes through the control
surface with consideration of the heat convection only at point 1r when

the turbulent heat conduction Q = Ea(x)%—(55) is included.
: r

For r =0 a further integration is possible which gives the
formulas of the conservation of momentum

_ﬁlbﬁ(ﬁ - ul>r ar = p,u, (uo - ul) r02/2 (4a)

and of heat:

b
2_ r 2
pufr dr = p ugyd, _g_ (kv)
0

With the equation of state for perfect gases at constant pressure as
basis

p T = const (5)
0 can be replaced by_ 5 in the above equations

5 _ const _ const 1

where' Tl is the temperature of the surrounding medium,

3. For the investigation of the transition zone by means of the
momentum and heat equations as well as of the equations of conservation,
the premise

a-1u; - oualx) ~wm

Uy =~ U - Uy - u.l q)(r’X) (63)
550 = §£.(_xl ¥(r,x) (6v)
(¢]

is made, where up(x) is the jet velocity on the jet axis and Sk(x)
is the temperature rise on the jet axis.




NACA TM 1288 | 7

This formula, carried in the equations, gives (if a practicable
assumption can be made for the variation of ¢(r,x) and V¥(r,x)) four
equations for the four unknowns:

EA(X)) EA(X)J bl(x), and bg(x)

The transverse component v still appearing in the equations is
determined from the equation of continuity of the mass

T _
;=-l/5_urdr , (7)
r [o ox

The next problem is to make a practicable premise for ¢ and V.
These functions occur in the integrands of the integrals appearing in
the equations and in the expressions defining the shearing stress and
heat conduction at point 1r, whereby a mean value may be chosen for r.

In connection with the similarity of flow in the jet cross sections
resulting for the asymptote it is then logical to put

o = @(n*) with n* = b—rl (82)
_ - _r
W = W(ﬂ) with n = b2 (Bb)

This theorem actually seems to be confirmed by experimental results which
indicate far reaching similarity of flow profiles in the transition zone
(reference 2).

Recommended for the profile form is the’ distribution function resulting
theoretically for the asymptote: for the case of air in motion (see

section IIT) it is the function ef(cn)z, where the parameter ¢, defining
the width of the distribution, contains characteristics of the asymptotic
flow. The actual calculation by this method presents some difficulties,
and besides the distribution function obtained by the differential equation
does not approximate the experimental distributions in the desired measure.

" (See fig. 9.)

Incidentally it seems timely to comment upon & manifest inadequacy
of the theory, which may be attributable to a not entirely equivalent
formulation in Prandtl's concept of the mixing length. According to
Prandtl's hypothesis of the mechanism of turbulent mixing, the
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turbulent exchange is effectuated by turbulence balls, which for the
duration of their own existence transfer their properties invariantly
from one layer to the other. Accordingly the momentary fluctuation u!
with the momentary mixing length 1 should be put as :

- ~ >3 . 1° 3w
u' = u(y + 1) - u(y) = 1=—+ —t .. .

S 2 ¥

o1

oy

which, in general, represents a permissible approximation considering
the smallness of 1, but at particular points such as In the profile

In the original mathematical wording u' was put equal to

center, forlexample, where QH'= 0 and therefore u' should be

dy
put u' = 0, the results are inadequate, although fluctuations are
certain to occur. In consequence, Prandtl (reference 3) suggested the
average value formation

€ = Kblug,, - aminl

(wherein K = empirical constant, b = breadth of mixing region of the
velocity) for the apparent kinematic viscosity

%

Sy

3%

€ = 12
dy

in the original draft. This theorem has then no longer the differential
character of the original formulation and avoids the said inadequacy;
however, it then results in inadequacies at the edge of the profile where
the fluctuations and, with them, the apparent kinematic viscosity cancel
out, whereas by the new theorem an amount of € constant over the entire
width of the profile is involved, On the other hand, the new theorem has
the implicit advantage of being substantially simpler mathematically and
hence of simplifying the calculations considerably,

A very practical representation of the distributions, which gives
a very good approximation, is presented by the function

(l - n*3/2)2 and (l - n3/2)2

already used by other workers (reference 4).

|
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Thus o N : . .
| v={1- n3,/2>2 . (9a)

:q).: (1 _.71.4'63/2)2_ = [1 - '(q,b2/b1)3_/2]2 - (9p)

with n = r[by. To simplify the calculation for bpfby for the case of

outside air in motion 'iul #'0), the ratio of the widths resulting from
the theory of the asymptotic distribution functions for outside air in
motion is approximately put as

bpfor = \E (10)

(See section ITI.)

The case of quiescent outside air (ul = O) is treated later.

4, Part A of this report is restricted to small temperature differ-
ences. This case is amenable to calculation and represents the conditions
accompanying any temperature differences in first approximation.

The velocity field is computed by the momentum equations.

The equation of conservation of the momentum gives the breadth of
the mixing region of the velocity by as a function of the axial
velocity Uy

1 1
u - gy 1/2 g% -~ W Ty - Uy s ol 1/2
Uy - ug 1 u, Uy - U3 Lug

with the constants 47 = 0.133 and e = 0.257; and the subsequent
calculation gives the axial velocity U, as the describing variable

of the flow field rather than the nozzle distance x. The momentum
equation is specialized to r = r,.

bl/I‘o = (ll)

The use of the foregoing result gives a linear differential equation

of the first order for the nozzle distance x .as function of the wvelocity

on the jet axis u,.
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' ' U, - u
When the integration constant is fixed by the postulate A L -1
. o~ "1
for the boundary of the core Xy
1/2
x_1fe-\YEue ] fae A
ro K uO ul "o
(12) .

11 11 Xk
B<§1/2 p 1[2> * 7<§3/§ . 37§> T I,
o o

uo - U1 _ 1

£ = == s €0
U.A _ul + uj (1 + ul
U, -"uy u, - U = 4

and the constants

with

a = 0.0275, B = 0.0549, 7y = 0.0375, p=1.9259

The length of core xx/r, 1is to be taken from the theory of the core;
K is an empirical constant,

In the asymptote the formulas are obtained

1/2
~ (Yo Y 1

b x| —= A
1/7o <u1/ 1 3, - ug\L/2 (13)

U =1
with the constant Ay = 1.972
and
1/2

X 1{ Yo 1 1

=& p|———] = A

To " K(‘lo - 1_11> @o) 2 T, - up)\3/2 (14)

with Ay = 0,1002,
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With the nozzle distance as independent variable the asymptotic
formulas read

(uo - ul)l/3 |
g AB T 1/3 L '
by /Ty R K ' By x/%o (15)
[Fo (91/“§92/3 ( >
with By = 4.246 and '

iy - U . 1 (ul/uo)l/ 3 1 :

Uy - ug K2/3 (uo - u%)2/3 B2 (x/ré 2/3 (16)

. T

with B, = 0.216.

_ In figures 1, 2, and 6 the functions of the velocity mixing field
are shown for the parameter values

U ~ U1

——= = 1.0, 0.75, and 0.5

e}

The temperature field is computed by means of the heat equations.

By the equation of conservation of heat, the breadth oi the mixing
region of the temperature b, is

(17)

b2/%o = S ; 1/2 _ _ 1/2
<A/ o) [uo uy (U u1> ap + ey E‘l}

U, \Uo - 11 o)
with dp = 0.0786 and ey = 0.257.

The heat formula contains the empirical constant E, the ratio of
interchange of temperature and velocity; according to the measurements
by Pabst (reference 2) and others it is equal to 2.

From the heat formula a Bernouili differential equation is obtained

- ) Ty, -~ u
for 9,/ as a function of A1 Unfortunately the quadrature cannot
A/7o U, = Uy

be carried out. Fixing the integration constant by the initial condi-

Uy - 1 . L
e = e a1t i
tion 'BA/‘BO =1 for -_a—o—-:—u]—- = 1, the result is
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sAﬁo= . : .

U, = W 1/2 _ 1 .. ‘aA_ul .
D<J%I“l§ | £C-1/2, - 37 d(uo - ul> L (1)

A <“A‘u1>
u, - uy Uy = Uy

(18)

with the functions

— . 2 —_
Vluo - Uy (U - u1> +v ul<uA - u1> PV N |
u, \Up - U1

Gtz vt Y sy vy a1
U \Y - Y 24, 6 u, - Uy 7 u, -
L

and the constants

C =-0,6111 D = 0.4848
by = 0.02M g, = 0.0522 hy = 0.0876 b, = 0.2571
v, = 0.0066 v, = 0.0253 V3 = 0.0196
vy, = 0.1335 Vs = My Ve = 1y V7 = My

In the asymptote the formulas

bofro ¥ 2 oyfe W
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are obtained in agreement with the mathematical assumption
be/bl VE =V 2

In addition
ry ~ l.(uA e A T : |

In figures 3, 4, 5, and 6 the functions of the temperature mixing
Tield are represented for the parameter values

U =~ g

= 1.0 0.
= 5

The integral occurring in formula (18) was obtained by numerical inte-
gration.

The case of quiescent outside air (ul = O) presents a singular

behavior as evidenced by the fact that the breadth of the mixing region
in the asymptote is represented by a l}near function ©bj(x) ~ x, while
with outside air in motion bl( X) o~ It is found further that the

ratio of the asymptotic mixing width obtained for outside air in motion

is not applicable here. The theory of the asymptotic distribution
functions produces, in this instance, an impracticable .result (bg/bl—éoﬁ.
The asymptotic ratio

bo/by. = 1.33 for u; =0 (21)

is obtained from the law of conservation of heat by an approximation
method.

The functions of the turbulent diffusion for the singular case
up = 0 are as follows:

velocity field
1

byfro = Fy S : (22)
Yo = U



1k
with Fp = 2.%37

%/to = &
with F, = 0.13L7.

1
F

U - 0

2 (uA - ul> i xK/ro |

NACA TM 1288

(23)

With the nozzle distance X/TO as independent variable

b :
L =-q + KG (X - X
To To Ty,
ﬁe - u]> _ 1
YU 1 KEE x _ X
Gi\To 1o
with Gl = 2,737, G2 = 20,321
<G2/Gl = 7.h25)
Temperature field
Uy, - u 1/2
H + (1 - Bp)(A—=2
b, fr, = B o~ 1
E/To 1 (ﬁA - up
5o
"y U — U1
3 /a =
Al/70
Ty - 1/2]2
| E@-+(1-—H@ e M| /]
Uy = Y1
with

(24)

(25)

(26)

(27)

Hp = 1.123

-l
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For infinitely great nozzie distances, the formulas are

bl-/roz KGE’S/ro ' S _ (28)
ug ~uw\ 1% 1 (
A 1L 1 29)
(uo - ul) K Gp (x/ry)
and |
' 1
bz/ro o Klm— (30)
uo — ul

1

- U, = u
ﬁA/% ~ -1(2(;——:\ - u1> (31)
with Ky = 0.793.

All formulas still exhibit the empirical constant K., It is
embodied in the apparent kinematic viscosity

€(x) = Kbl(ﬁA - ul)

and represents a measure for Z/b, the ratio of mixing length to mixing
width, which is regarded. as constant for the individual Jjet sections;

K and 1/b are to be considered functions of the characteristic

length x/ro. But in view of the far-reaching similarity of the profiles,

the dependence on x/rg throughout almost the entire transition zone is

expected to be slight, as the measurements seem to confirm. For example,
Tollmien's investigations (reference 5) at the plane jet boundary (these
conditions prevail in the immediate vicinity of the nozzle mouth!)

give 1/b = 0.068; for the axially symmetrical jet diffusion (the
conditions encountered at very great distance from the mouth of the
nozzle), he obtained 1/b = 0.073 (where, for reasons of continuity

at transition from the core to ‘the transition zone, b in the latter,

as done here, is to be put equal to the jet radius).

Also of interest are the distribution functions (section III). As

2 .
already pointed out, the empirically obtained function (1 - n3/2> gives
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a very close approximation of. the experimental distributions. The theory
gives the following asymptotic distributions for u; # O: '

Velocity distribution

o = (0%, n = n (32)

whereby with

UpA - u
o ¥ u, 13, by, 613
U 1

As reflected by the previously obtained results concerning the structure
of the mixing zones

0, = 1.811 | (33)
for n = r/bl.

Utilizing in correspondence with the asymptotic behavior of the

mixing width (bl X b, X xl/3) the coordinate n* = _§7§
X

o = e= (01" - (3w

ith | '
W1l <'1EL_>2/3
_ 1 %o
GO* =0 )+27K1/3 (U.o -~ 'Lll) 1/3

————

Yo

In the case of quiescent outside air (ul = O) the asymptotic

velocity distribution function is

= y M = r/x (35)

¢=E}+(%®ﬂ2
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with

and

o, =(1/K)x 0.078%4

For the temperature distribution the important relation
v=0/F ana v =o/2 . (36)

is obtained. This result is already indicated in Reichardt's report
(reference 6).

The asymptotic distribution functions are represented in figures 7
and 8.

Now, the theory is compared with the experimental results. The
former contains two emplrical constants E and K, E being equal to 2,

In the first part of the investigation (reference 1) the constant X
for the core had been determined on the basis of Tollmien's study at the
plane jet boundary (reference 5). The result was K = 0.0106 on the basis
of the heat eguation, but the thus defined value is somewhat uncertain
owing to the doubtful flow losses as a result of the friction at the
nozzle wall and the assumption — valid exact only for small velocity and
temperature difference — that the breadth of the mixing regions of
temperature and velocity which served as basis of the calculations

act as \/35 : 1.

Quantity K 1s determined next for asymptotic conditions. Tollmien
(reference 5) obtained b = 0,214x for the diffusion of a Jet issuing
from point source, as against by = K X 20,321 X x according to the
calculations by equation (28). The comparison gives KX = 0,0105. When
the determination of K 1is based upon experimental results of other
structures of the diffusion field, such as the gradient of the asymptotic
distribution function or the decrease of velocity and temperature along
the jet axis, the foregoing value of 'K is almost exactly reproduced.
The calculations have been based on the value

K = 0.010 ' ; (37)
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For asymptotic conditions, no incidental flow loss due ‘to frlctlon
at the nozzle wall needs to be considered. (The flow loss can be '
allowed for by introducing an effective nozzle radius (see part I,
(reference 1)); for infinitely great distance from the nozzle, however,
the size of the nozzle radius is of no infiuence.) The ratio of the
breadth of the mixing region of temperature and velocity serving as a
basis of the calculations is rigorously valid for the asymptote. The
above value of K should therefore represent a safe value for asymptotic
conditions,

Experimental data for small temperature differences as treated here
are few and limited to the case of outside air at rest (ul = 0). For

greater temperature differences (to be discussed in part B of this
report), Pabst's comprehensive measurements (reference 2) are availsble.
For the asymptotic velocity distribution Reilchardt's measurements
(reference 7) are available. The comparison (fig. 9) shows practicable
agreement up to the boundary zone where the divergence 1s fairly great.
This difference is, as stated above, attributable to the nature of the
calculation method,

The decrease of velocity and temperature along the Jjet axis was
measured by Ruden (reference 8). Unfortunately the published report
dealt only with the test curves without giving the test points or any
further detalls of the measurements. The comparison reproduced in
figures 10 and 11 indicates very good agreement between the test curves
and the computed functions up to a short transition arc.

This transition arc still defiles interpretation at the present state
of turbulence research. The calculation by integral formulas contains as
essential premise the assumption of profile similarity for the individual
Jet sections., The result 1s a hyperbolic variation of the distance
function up to the boundary of the core, while the experiment and also
the differential equations (2) of the mixing process indicate zero tangent
in the boundary of the core. It is in this short transition arc that the
transition from the asymptotic profile form to that of the plane jet
boundary is largely effectuated. The profiles throughout the entire core
are very similar to the profile forming in direct proximity of the nozzle
mouth, which corresponds to the mixing of two plane Jets ( compare part I
(reference 1)). For the calculation of the transition arc, a return to
the differential equation (2) would be necessary, while the determination
of the breadth of the mixing region involved in the apparent kinematic
viscosity e€(x) = Kbi(ﬁﬁ - ul), would call for the conservation formula.

Even so, the variation of K within the arc would remain, whereby it is
to Be noted that the assumption of similar profiles is equivalent to
assuming a constant K, so that the existing dependence of K on x/rg
would essentially have to occur inside the arc. But every hypothesis
for this dependence of K and of l/b (assumed as constant in the
individual jet sections) fails at present,
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According to the experiment, the transition arc joining on the
common core boundary terminates in the hyperbolic branch of the distance
- function; the velocity decrease in the arc is at first very slow compared
to the temperasture. In the comparison (figs. 10 and 11) the starting -
point of the computed hyperbolic branch was chosen accordingly.

In the éalculation, the integration constant was so defined that

Yp ~ Y
YWb %
velocity and temperature decrease started at a common boundary. In these
conditions, a displacement of the experimental correlation is to be
expected relative to the theoretical correlation of the related velocity
and temperature, which would have to disappear for greater nozzle dis-
tances, This displacement is manifest -in the comparison, figure 12.

.SA/ﬂo =1 for, =1, i.e., that the hypefbolic branches of the

II. Calculation of the Variations of the Mixing Width

and of the Axial Functions
Momentum equation (3a)
-rb?(ﬁ - ul) - %— ‘/[bl bﬁ(ﬁ - ul)¥ dr = e(x)r{%a ﬁa_ bt WA E(ﬁ - u1>§§
x Jr r or
Heat equation (3b)

- 2 o ' ' _
rovd - o \/,b pudr dr = Ee(x)r o (p¥)
ox or

Jr
where

€(x) = Kby (p(x) - uy)

Equations of conservation (l4a) and (Lb)

Jcbl pu(u - ui)r dr pouo(uo --u;)ro%/?.

by | . .
JF pwr dr = pgousde ro%/é
O .
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In correspondence with the equation p X T = constant P is replaced by

5 - const 1
T, 1+ ﬁ/Tl

The transverse component is obtained from the equation of continuity

d(ru) N o(rv)
ox or

=0

'é-;(-r

Hence, for the momentum:

_ QE . 11 u - ul!
JCT . r dr (g ui) 1+ ﬁ/Tl ‘/rb 1+ ﬁ/Tl

. ; 8
_ _ 1 a(u - ul) _ 1 + ﬂ/Tl (3 a)
= Kbl(uA - ul)r = E/Tl ~ + E(u - ul)———s;————

and

ugu - u uO - ul 2
r dr = 2
JCb 1+ a/Tl 1+ ﬂ /Tl / (380)
for the heats:
) 3a K - by 3
ox 1+{§/Tl x . 1 +19/T1
(39a)
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and
b _ .
2 3
— 3 (o) 2
f e V1 dr = —ee T 2 b
f_o T T e o (399)

If we limit ourselves to small temperature differences 60/T1)<K11,
we get:momentum

[T, ) (B )3 [t E (R-wm)
0 ox Up = Y ox Jp up \%o - 41

s . (’408.)
o o)
R
and
bl "'. u - u o)
" S
heat
3 fuy) ( d 2 3
(e wfong- & [Ty
(_ 3 (k1a)
Uy - uw _
= EKbl——lAuo Ly . (s/ao)
and

J[bet%hk> Ei— rdr=r %/2 (41p)
0 Y0 ° '

Posing the formulas (6) and (8)

330 =

with n = B/bE(x)




22
the transformation formulas read:
n = E/bQQ r = by

dr = b, dn

(5/3%),. = (3/3x), - (3/am), 22_

(372 = (/o) o

Correspondingly

T-u up(x) - ug P(t)
Up - U3 Uy -

with
£ = I‘/bl =1 b2/bl

giving, after effecting the transformation

2

momentum

(B - By - fgédé LA -
1 u, - uy/\uy - U o ® P 1 Uy - up 0
Ay - up\f@ -wm\" [ [t 2, u AN

Zbl Cp&dé— bl
Up - ul/\up - u1 e up - ul Up - ujy

o

-~ 2 —
b (A3 —(—qu’zied&+ A Sl AN i
1 3 dg u lluo-u £

Ug - Y o-u

T - w\® | do
= et et g_
Uy - w d§

(Accents denote derivatives with respect to x)

NACA TM 1288

de .2
L d§>
! 3
®s d
Je

dap 2
JE ¢ dg

(h2)

Q)-

g>+

(%3a)
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and

| 1
"E(bl/ro) (uA . 21) ul{\:ﬁ . \:}7\} 9% at + %‘/o‘ PE dg:, =1 (43b)
heét |

Y
ee B ([ -

(e B @) [ 8- ey

e @/M [nn- et ([ 4

[~

""I
+

EA 2 A -y -SA ay ' TP
b 3 d 3o an
Celor)es' sty <j; ‘) = -u1> %o May )
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Here (9).must be inserted:
¥(n) = (1-03/2)°,
< <.
1-nb2b13/2) 0o = S/
q’(§)=(1‘53/2>2 and <P(ﬂ)=( [ & <n<12
0 bl/b2= S 1

(a) Velocity Field

I. Equation of conservation of momentum (L43b)

— 1 l
2fuA - uil\lup - w1 ftp - u 2 1
2(bl/r0) (uo - ul)l: u, (1}:; = u.i::)\/(; g di + 30\/0' PE d§:l =1

The evaluatlion of the integral gives

: : L /2 5 13/2 8
f¢2§d§=f (1-§3/2)gd§=§§2-$§ +§§ 8

g 3 > 2 7/2

hence

1 .
243 N1
dt =
t/;cpegg 3650, - Amgd§=i
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Then

with dp

'G.A - ul U, - ul uA -
2(of ?C)Z(uo - u1>[ 5 C‘o -

u1>2h3 w9 |

= 0.13352 and e

In addition

a(by /ro) __(uo !

+ =1 =1
w3 /3640  uy 70 :
: Uy -~ u U, - uy /i, - w u
(b1/70)?2 A -~ W) [Y = WUy - U)\olu3 +—}-9—J=1
2/ \Bp = W1 /| U5 \Up - /1820 uy 35
1/ T - 1/2 - e 1/2
T -\ uo‘ulﬁ_lA'uldl+u_J._el /2
Us = U1 Uy \uo -0 Yo
l=0.2571)+.
up ul' U, u u u u
~ o ~ Y1 AT 1 1 1
d - + = = e
) U, l(uo-ul> U, » 1

d(x /ro) <ﬁ "

'lJ.O u]j

O

II. Momentum equation (43a)

- - 1 g — > 3
Up - Uplfup - ug . Up = 4 do ,2
- oL Y LI — -
bl<uo - ul><uo - ul)<f uls d&)cp + by <uo = u1> L/; e d&) P
0

2 =
ul\3/ [uo -y /uA - uﬂ uy
" dl + —

\uo - u

3/2
el:\

25

(45)

(46)

7

u ) (T u ' t s q g\ 1
1\ (%A - Uy _ A = Uy
u1>(uo ~ ul) g P2t ds e bl(uo - u1> fg ot 4t| +

. 18
b tfup - up deo
ul 1 . uO - ul E d§

) ,
| a(¢°) 62 g + L
1 £ at Yo =

g2 ae,)
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Specialize to & = 1/2,

Evaluation of integral

(1) i/z : o
a1z
L Pt dg = % 28 2 = 0.0807h

2

- (1 - ¢3/2 - 2_.1ip-
cp§=l/2—(l §/>g=1/2'8 5 = 0.4179

n

fl/z
¢t dE] @ = 0,03374
Jo > 1/2

(2)
f_d_ce £2 4t =f3(§,2 _e1/9) 2 4 =%g5'._6.§7/2

7

1/2
do .2 o
</; JE 3 d§> @1/2 = =0,02382

(3)

1
‘/;/2@2“&:%’?“%'%’1_23'%2;_0*
\/'2'(%+Ilgil—=o.01158
(4) |
f;gqngdg=-§---’7*-+%-%-I2-5+22_6\/§=o.ou783

NACA TM 1288
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al o2)
(5{[———&"’; :

_ﬂflg
1/2 4t

" \/_<28

(6)
S &
1/2 4%

(1)

Abbreviating

1

 with A

I}

C

zagsf(-a

- %geg/z--

18
+ ?Tg

ae = - 12

536

)(§1/2

13/2
i3t

_§.b 36,
> 13

—-—-—--006683

13 3

1004 + 2370078 - 500 'C -

u
+ bli()ZF + 1
. Su -

0.0337k

0.02317

F =- 0.06683

o]

H = - 0.68566

3§ + 3§7/2

hi

3181
53

u]

3
Y

)g at

L
56

B =-0.02382
D = 0.04783

G =~ 0,20013

t
—57 210"

b '()G = K()ZH

27
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Introducing (45) and (h6)

bl/ro = 1 1

( )1/2 - 1/2
, Uy — w w1
a(br/ro) _ - (' {_ﬁ—o_l al )+ g5 3 el}
d(x/ro) ( )3/2 []3/2
gives
11/2 lT ) ( )A ( )2 { }2( “p = () )
SO [ ()32 3/ |1/2 []1/2
- o't 1 1 ({ )'D ( ) { } - uj ( ) { ]'
U.o - 111 ( )1/2 []1/2‘ : ( )3/2 []3[2 u —_ ul ( )3/2 [ ]3/2
-x ()%

or

( )152)[:]3/2{( )|}——dl( )+—e{l + B( ){_—_1.1;(1( )+%% el}

N R S

To = May( ) + 5k 3 M flo— Uiy, g
+F(){ g 1()+u—0§e1}+cuo__ullu () + % 3 el

= —k( )%
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or
( )lje?t ]3/2 uou; 1?‘.&11<A + B+ C + F> ()2 + % <el(A .\ g . C. . %,)Jr
a(d &) () + 2 B leg(0 + 5)) o=k
hence
( )" 1 ' g _ul ) u__l_ ul }2 o 2H
()1/2[]3/2 G‘. g ()+Buo()+7_uo—uluo ()

with o = -0.004505, B =-0.01736, y =-0,01343, H =- 0.68566

and finally the differential equation

U - up fia - ug\l v p u (0 — w1 ry u  ul
_ up - ul 1 Uy \Up - 0 1 uo\Us = Ug 195 U5 =1
\% = "1 ﬁA"ul5/2uo‘uldﬁA"ul e 3/2
Yo = W Yo g =5y u, 1
= K d(x/ro) (47)

with o = 0.00657, By = 0.02531, 7, = 0.01959, &; = 0.13352,
el = 0.2571)4-
uy -y

) and x in place of x/ro involves

Writing y instead of
. Up = 1y

the equation

Ay2 + By + C
C - dy = K dx
2
:>'(E}'+F),/Ey.2+Fy
or
2
- dy Ay=+ By +C 1 - K dx

Ey3 + Fy° /—m




where
- U u u u
A=ap Yo 1 B = B et C=79 up 1
° o Y Yo - Yy
m., - u k3!
E=dl ouo l F_el_l
U

Transformation of

y - 2L (5 (/)52 /oy

dy _ , F —t 2 = (7/E) 3 _ - (¥/B)3
& F(1-¢?) - (1 - €2)° Y (1 - ¢2)3
gives ' (F/E)2 ) E,(E/E) ‘C
Kx == 1 n(l - 52)2 (l - 52) 1 2(F/E) £ de
VE| g (®/B)3 o (#/B2 (o L. 2P
(1-2f (@-2Pf  (1-%)
__ 2 |A(F/E)2 - B(F/E)(1 - €B) + (1 - ¢?) o
VE| - E(F/E)3 + F(5/E)2(1 - £2)
¢ R(¥/E)3 - B(F/E)
__2 C (1 _ §2> , FEF/E)? / -
VE| |F(z/E)2 F(F/E)2
NRUCEIp

VE |- E(F/E) + F(l - g2j
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1

ke - =2 L uz@}“[_;_q_}m
E F (F/E)> 3 (¥/m)2
o
— - B
+(12 )

/E) .

1/¢f + const.

By retaining the 0ld variables and inserting the original values for -
the constants, we obtain

X[z = l%(uou; “1) /2“ <§1/2 §(1)1/2> ¥ B<gl/2 c(S:lL/2>

¥ <:]' - 1 >> + Xy /r (48)
2 2 (o}
with .
Uo - ul 1
A - 1> uy ul
—_— |+ p —— 1+ py—-
Uy = 41 Up = Uy Uy - g
and the constants
= 0,0275 B = 0.0549 7 = 0.0375 p = 1.9259
Uy - Uy
The integration constant was so determined that the wvalue roere A
-

was obtained for the core boundary xK/ro, xK/ro to be taken from the
theory of the central zone.

The formula still contains the empirical constant K which must
be defined by experiments (section I).

u
For the case of quiescent outside air (ﬁ% = O> the differential

equation reduces to

A~ W\ 9 1 _
- d(l:o = ul) dl3/2 (ﬁA - ul>2 =K d(x/ro)
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which gives

x[z, = (1/K)F, TAi—ul-l +(x/70) (49)
(=)
with F, = 0.1347.

(b) Temperature Field

I. Equation of conservation of heat (4ib)

i 1 |
2 Up - upfup - Uy
13 a1 _
2(b2/ro) ) \uo = ul> ‘/O‘ Pym dn + % /o ¥n dn 1 (50a)

(o]

¢l

By (9)
v = (1 - n3/2>2
(b
o 1

VE

AN
HA

T8

o(n) = 1 (50b)

A
ItN
[

Evaluation of integral:

T o~ B - 8

Sn2 b3/ r/2, 1g3/2,5 L T/2 Me3/hs
2 1 5 7 5

4 3/213/2 , 1,5 &

~F - 3/4 13/2 | 1.3/2.8

13 * o - g 2 T

1 1 E
fo pyn dn = f [ oI an = % (9/70) ¥ E7l/“ (3; 2613) .

% &G
gof2 \65 x 8
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For' E =2:

. f eym dn
: : ’ . ‘ 0 .
(2) ¥ndn = <l -1 ) n dn
1

f ¥n dn = 9/70 = 0.12857"
0

0.04382

lé_& /2. 1 .5
.2Tl 771"'57]

hence
2(3 d%o ~Up/up - U u) 3
(bEIrO) <6A/6°) u, <‘:o - ul)d2 + ug elr =1
(51)
1 ' 1
3 1/2 1/2
9, [9 U - uifus - up ul
( A/ °> = fu —jdet T e _
o] \ ] (o]
with dp = 0.08765 e; = 0.25T1k
In addition
a(v
._g_z_l—rol = -1/2 X
d(xlro) (52)

3. /= v SN .
U, - uj A (A -w Uy - u ug >
{ Y% %[:a .<uo - u1> * .<u° - ul><6A/ﬂ°) :]+ Uy el<aA/8°

u. - Uy . Uy - U w — / .
[ouo 1 de(; 8 ui) il 61]3/2 (%j%f 2

*This value. was incorrectly given as 0.2571hk in the originial
German verslon of this paper.
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II. Heat equation (lha)

T, [ta-uw\ /[ /M 3, /4 [ pn
3 uy - uy LI up -.u d
- b, A (——) / anlv +b, A (AT 1 / @ 2an v |
25, \%-w <o i n) 2 3 \w - /\Jo an' Y
- ﬁA'ul'i_& PN AT RPN ' yn dn | -
2\, - up 3, u, - vy ( A/ o) . ® n |
] il — _ — 1
1 () oz s ().
n o~ "1/ Yo n /

3 Nl Ua = Iy
. w u u 9
u, - o 1 dn

u, - Uy o dn

o
n
|
R
/b"c;r
o]

“l

We specialize to 1 = 1/2,

Evaluation of integrsal:

(1)
2
fcm dn =f<1 - [n \[E]B/2> 1 dn = 2 - #3/1;“7/2 R %33/2115
1/2
4
~/o' o dn = % } ;—8@3/ * 1160E3/2

For E = 2: 1/2 11y 1
£ mdn=g-ﬁ\/§+%.{§=o.os773

2
ﬂf=(‘1-n3/2) S1-egdE g3 V= 2 - VE

=== 0. 41789
fl/2
o n dn wl/e = 0.02413
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(2)

fg%“gd" _ f( - 3) <1_—- ,E}_‘/—Eﬂ3/2> (Tl \/_E_)l/e\/_ET 2ar
T o33/ / (,]5/2 - E3/4n8/2) an = - %3/%7/2 N 5%3/2,15

1/2 '
99 24 - 3 5 3/4, 3 g3/2
0 d"]q an 56/5 E * 160

e
f dj:nzdﬂ - _3_ WE o+ _3_,[2‘ = -0.07438
0

1/2 dp o
o e an ‘1’1/2 =~ 0,03108

1/2
= 0.04382 - Q¥ dn (for E = 2)
0.

1/2
an (L. 1 ,1° 11 lL)
j; o¥n o (8 EE+160+E80 28 " k 256
1 1\, b/z/1y\ _
l{f2.(- 50—8- - 1—1>+ \/g(m) = 0. 014-157

1
f oyn dn = 0.00225
1/2

- 35
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(4) _ _ - : :

1 1 1/2 9 1/2
/ Wndn=f‘lfndn-f ﬂfndn=—-/ ¥q dn
/1/2 - Jo 0 70 0

fl/E o1
Im dn = == - 2 = 0.0807k -
0 "= 160 28 7 / im dn = 0,0L783
3/2 }

d(cpllf) 2an f{(l - [ ]3/2

f{nl/e( _ 33/ 3) + 1]2(3E3/2 + 1283/ 3) +

n7/2( - o3/2 . 9E3/h) N n5(6E3/2)} 2an = TI7/2(_ %3/“ - g) .

(5)

n5<$3/2 - 123/t 2) ¢3R5z | 1853/ "e<u§E3/2>
b oaled zy le e WE [
c/;/a d: dn - 1/2 g: an f A

For E = 2:

]Nid(cw)z 3
S 2A = (o343 Y>(3,.3_9_
I e (3 g) VR 25

\[?(% . -2-5 + 2’—2)=- 0.08765

1/2
d(o¥) 2, 9 3 3 N 3 9
/; Y& 1A= (m*m)* 28 * 512'53>+\/§<'2_8'R+

\1*/5(%) = - 0.06597

|
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(6)

(7

f (- 3m/2 + 30P)ran == 2aT/2 4 207

N

+.31\/2_=_’°'20013

nd = 3n3/2 4 343
dn

av

(,]d_> - 3- 22 - -o.68566
N/1/2

Ty - w
Abbreviating ( A — ul> to ( ) gives then

Y|

- b
2130

bp_.u_o_uf_lﬁ.(i/ﬂoyn +b5"( ) 34 F + bp'—L

with A

0.,02413

)
It

0.0L4783

e]

A ( )'A+b2|

1

E_fc’;( )B -bek ) 3_-2 + ( )<5A/ao)'Jc -

ol

A ¢ -=VEK() 3A
Yo U =0 dg o
B =-~0,03108 C = 0,00225

F =- 0.02167 G, == 0.20013

H =- 0,.68566

B Ol )

37
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with .a = 0.02638 B = 0.05276 ¥ = 0.00225
& = 0,04783 € = 0,20013 £ = 0.96967 .
The introduction of (51) and (52)
1 1
bo/ry = — -
/ (ﬂA/ﬂc)1/2 Up = 3 /T - ul)d2 + Elel 1/2
X 'I.lo \uo-ul uO
d‘bg/ro!
d({/ro)
U -y % (G- e AVE I ( s
-a{ % 62[% (uo-ul) ( ‘ul)(A/ ”“‘el %)
o _ _ 3/2 3/2
[uo u1<ﬁA U-1>d2+ u_lelJ (5 Al%)
) Uy = 1q Uy
gives

<5A/ %)'(5;:. /:O)lfz Dll/'z{(’l ) 'Zi)( ) <51 i ';i)uou-l w |

(><ﬂ/§212<[] o) -2 —> ()

- u
Transforming from the wvariable xlro to the wvariable ( A l) gives

uo-- ul
- als, /8
3 /s '= A/ o '
(Baf5o) = T2 ) (53)
<uo -4
but by (L47) .
o[ se [ a) + Ml ?
()'= 0 =_K() 0 Uo
a | U -, 2 Y, o R
(X/ro) ——-—uo ( ) + Bl%( ) + 7’1{13 uo = ul
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-I_I-A—ul

The result for ﬁAjﬂo as a function of
. ) ) uo -'ul

\) is then the
differential equation
2
d(ﬂA/ﬂo) (TP 3/_
d(uA - ul) Al o

Y =%

U, - W, o uy u u - u 5
Clal—uo—'( Yo+ 31%( ) + X - [louo l'd2( ).+ %el]l/

: "luo U5 - vy
1 +
3/2 /0 - W w\3/2 uy
OYECRT R a0 e )T {mO) v et
b
< 1 Y
(3af20) Pz o o (5h)
[0 3] a0 )

with ay = 0.00657 By = 0.02531 7, = 0.01959

4, = 0.13352 ey = 0.2571k dp = 0.08765

py = 0.02013 pp = 0.05224 p3 = -0.00199

6, = 0.96967

This equation is of the type of a Bernoulli equation
X - y3/20(x) - y¥(x)

and can be integrated., Unfortunately the quadrature is not feasible,
It gives

i (55)

- 1
£y o - (M2 A - 1/2 1 <GA 'u1> -
21(f0 = M1 d £(1)
2 (Jouo ) T -y ¢ (ﬁA - u1>3/2n U, - 1 ”
u, - Uy Up = U1
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with the functions

Uy -y uy

Pyl == + P
U - 43 o~ W

£ = =

u - 1 u

d2A 1)“31 1
Uy = U QW -0

ug - vy (A - up\? up (g - vy uy
% il e T e oo
Ug \uo - uj, U \Yo & Uy, Uy Up = g

T]=

O

5 uo - ul/ﬁA - ul +e Ei 372 ﬁA - ul N ul 1/2
' Uy \Up - U luo pluo'ul P23 -

and the constant

p
A=+ 1/2 3 == 0.6111
p2 d e

The integration constant was so defined that

_ Ty - w4\
a/s =1 for(A——1>=1
A/l o u, -

Hence, for infinitely great nozzle distances in the case of outside air
in motion (ul £ 0

2:

3 —
— 02> 1 p2e uA - ul
9,8 o~ = —_ —El - S Y
A/ o [(e §l2 71 <uo - u_l

and
= o 1/t -w
aA/ao r 2 <u———o - ul) (56)

The asymptotic formula for b, /ro follows as
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or

bg/fo ~ V/E. bl/rO . | ' (57)

By this result the assumption b2/bl = VE; based upon the theory
of asymptotic distribution functions, is sustained.

But this does not hold true for the case of quiescent outside air
u) =0 The theory of asymptotic distribution functions gives an

impracticable result: be/bl—9 o, The assumption of the same ratio for

b2/bl as for outside air in motion proves inconclusive.
In the case of quiescent outside air, the differential equation

reduces to
d(sA/ﬁo) ( /%4)3/2

ﬁA—ul

 —— -
Sy Sa “1>
uo - ul

with

1/2

@y dp

g]_ d 372

. uo"
_ A‘ull/
E2+<1 7)uo'ul

For the breadth of the mixing region by

The solution reads

5A/f’o =

1 1l

1
(aA/a )1/2 (1?_;_11)1/2 a /2

b2/ro =

- u
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-and - ' |
' - /r ! »n o+ (L ‘_72)(%?'&——: E]l_)l/%] )
(o2 621[2 (3A : ui>

In the asymptote

and
a.1/2

b/rzlybr
270 d2172 2 l/ o

With the constants computed on the assumption b2/bl =\ﬁ? the result .

would be bpfb) = 1.98, hence contradictory. The assumption - bpfby =}/2
for the case of outside air at rest must therefore be abandoned and the
correct value of bg/bl obtalned by a special conslderation.

For this purpose the equation

a,1/2
b [ro = _1?_2_ 72 P [
ds
and -
81
b2/1’1 = 4oy (58)

must be solved. The constants at the right-hand side contain b2/bl as
a parameter. By an approximation method be/blfz 1.33.




NACA TM 1288 : 43.

The calculation made with this value of bEIbl gives for the case -
of outside air at rest:

— _ L Y 47T L A
. \UW ~u

35 = ' — (59)
A o ﬁA - ul l/ 2
Y., + (l -7 ) S2—=
2 2 u, - uy
) Ay - u 1/
Y417 + (1 =~ 7 A2
1}’2 2N\uy - g
b2/r0 = — (60)
upg - U
U = Y
with 7, = 3.25 75 = 1.123
hence in the asymptote
ba/ro ~ 1.33 bl/ro (61)
In addition
u, - u
13A/8 ~ 0.79 <—A—l> (62)
o uO - ul
- 1 Ty -~y
as against -@A/ﬂ ~ = | e—— obtained for outside air in motion.
(o] 2 'llo - ul

The calculated functions are represented in figures 1 to 6.

The integral in formula (55) was obtained by numerical integration.

IIT, Calculation of the Asymptoﬁic Distribution Functions

At very great distances from the nozzle, the veloclity and temperature
differences of the Jet and of the surrounding medium can be regarded as
small. :

Limited to small temperature differences (density approximately
constant) the differential equations (part 1, reference 1, (24)) read:



)-IJI- .

momentum:
- N =
-ou -0l BT 1 31
e —— = — ——
qu vr «(x) {8_1'-2'+ T Jr
heat:
+ véi = Ee(x) 625 + 1 éﬁ
qu dre r or
mass:
o7} oV
r—+v+r—=20
X dr
where

€(x) =K bl(x)(ﬁk(x) - ul)

1. The velocity distributions are now to be calculated,

a. Outside air in motion 1wy # 0

The similarity formula

G - uj ﬁA(x) -y

o - Uy T Tug =9 o(n)
ith il
W =
n 1 (x)

gives

éﬁﬁ/ul) _Uo -u1 Uplx) - ug do

1

dr uy u, -y dy by (x)

NACA TM 1288

(63a)

(63p)

(63c)

(6ka)

(6lb)
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Be(ﬁ/ul) U~y up(x) - uy a2 1
R wm wo-w AP my”

d(Tfmy) _uo - 1wy (ﬁA(x) - ul)' o+ o=t <EA(X) - ul)ﬁif ; b_1;>
ox uy ug - uj up ug - ug dn 1

etc.

On the basis of computing the axial functions by the momentum and
the heat equation

Tx) -y -2/3
uo - ul

bl(x) ~ xl/3

is applicable to the asymptote according to (15) and (16).

By the equation of continuity of mass
1 — 1

R e R S A L v(x)

NNy - ug u, - u 1 u

V(x) | 43 (65)
bl

hence

for the asymptote.

By the'equation of motion
- J— .b ] ( )
Uy, - uy ) \uy - uy/by uy \9 - ul - uy 1

The first two terms and the last term are of the order of magni-

tude x‘5/3, while the term v(x)<_ - )l/bl is of the order of x 7/3.
Uo = U1

The term with ¥(x) is therefore disregarded in asymptotic con-
siderations. '
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Noting further that

for small velocity differences gives for the case of outside air in
motion the asymptotic motion equation

T fu plx) - u (= u :
M - Kby (x) p(x) = up jO (uéul) +(1/r)é(_u/_ui)_ (66)
X Uy or T

the relation

walx) - w o -2/3 by(x) = boyxl/3
U.O - ul
gives
. 1 _-2/3
2y x"5/3 "2/3b°° 3 * de
P-ux N —
3 © «© b xl 3 d'q
u, -up 1 - P 14
- ou 1 uw?x L/3 ¢ 14d9
1 pxt/3 an® ndn
2o 1l _yPo-w1, &% 14y
3 3 dmy uy b, dn2 dn
Edq) Up - ul Y dgq) do
-=2ne+ ") =K =Yl TSt for 1 £0
dn Yy =] dn dn)
Integrated
-u u d
or
1, 1 ] d
R
o (o] 1 @
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Hence
9= e (%) win o, b= 2 1 "1 e (67)
IR _ : - 6 K Ug - 1 Y,

But by (15) and (16)

(uo - ul) /3
b, =k/3 1 %o s73BL vith By = L2k
(B1/%)
- 1/3 |
1 (wyu)
= B, with B~ = 0,216
U, K?/3 g - up 2/3 2 2
< Uqg )
Therefore
0 = 1.811 (68)

Transforming correspondingly bl ~ x1/3 on the variable n* = H/kl/3
gives

_ 2 2/3
p=e (%™ 1)" itn g% = 04272 (ul/uo) (69)
K1/3 fuy - up\1/3
( Yo )

b. Outside air at rest (u; = 0)

Conformably to (28) and (29)
Ty ~ 1/x
b1~x
we put

T = G, (x)p(n) ¥ = W(x)x(n) with n = r/x (70)
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A similar consideration as given.under (a) yields
(x) ~ 1/x (71)

The apparent kinematic viscosity follows as

e(x) = Kbl(x)ﬁA(x) = constant

Thus the problem appears to be reduced to that of computing the
distribution function for the laminar viscosity ¢. This has been
solved by Schlichting (reference 9).

The solution is

1 . 1 1
¢ = 2 with O = 5—F—— (72)
[l + (Uon)e] 2 \/_EKboo
But according to (28)
b, = K 20.321
hence
0y = ¥ 0.078% (73)

2. Relative to the temperature distributions Reichardt (reference 6)
has shown that

v = o' (74)

Q

respectively.,

with A., A. being exchange quantities of momentum and of heat,

To put it briefly: In this representation, the ratio AQ/AT
corresponds to the factor E, With E =2

v = o2 (75)

The calculated distribution functions are represented in figures 7
and 8. »
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W
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GREATER TEMPERATURE DIFFERENCES BETWEEN JET
AND SURROUNDING MEDIUM
I. Methods and Results
In view of part A of the present investigation, which dealt with
the diffusion of a hot air jet for small temperature differences, we
can be brief -in many respects.’
The differential equations of the mixing field read: (part A,

equation (2))
equation of continuity of mass

AxB8) , Axb?) _ go(py O {g@}

ox or or rar

equation of continuity of momentum

d(rpun) |, d(rpva) _ 3 [ .3 . 3l
ox * or ¢(x) or {%DS; ’ uarJ

equation of continuity of heat

o(rpul) , O(xp¥D) _ po(yy O | O0FT)

ox or dr o or

with the apparent kinematic viscosity

U

€(x) = Kbl(x) max 1—lm:i.n\

Integration with respect to r gives for the transition zone (part A,
equation (3)) the momentum equation

S > [Pr__ 3T - uy) %
rpv(u - @0 - 3% . pu(u - ul)r dr = G(x)p p——i;:———-+ E(u -1h)§;}
the heat equation

T T A 3 x5y
RS - 5 fr pugr dr = Ee(x)r 5o (p3)
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with
e'(X) = Kbl('l_lA - ul)

For r = 0 & further integration (part A, equation (%)) gives the
equation of the conservation of momentum

J[bl pufa - uy)r dr = p u., - u ro?
o ( ]J ouo( o J)‘?E‘

and of the heat

bo
PWIT dr = pouyd, ro%/2
0

The investigation of the mixing field was then carried out for
small temperature differences (part A) by means of the cited integral
equations., For the velocity and temperature distribution the "similarity"
formula was used:

0 -u Gu(x) -y

= ~p(n)
Up= U U = n -
'rl = m—
3 9, (x) -
5— = A W(ﬂ)
o o

This formula expresses the following facts: For very great nozzle
distances (asymptotic case) the flow proves itself similar according to
theory and experience. But it also proves itself almost similar for
nozzle distances extending up to a point near the boundary of the core,
according to experimental data (cf. Pabst, reference 2).

In order to simplify the calculation, the asymptotic ratio

bp/by = VE

for the total transition zone was assumed.
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The functions and v are identical with the asymptotic dis-
tribution functions (part A).
NS
~(o ﬂ)
=e(0 —
9 n=r bl
E
v = ¢l/

The application of the foregoing investigation method to filelds
with greater temperature differences involves a considerable amount of
paperwork. For this reason, a different method is applied.

The study is limited to fields with ocutside velocilty vy f 0
different from zero, while the singular case u; =0 (cf. part A) is
disregarded.

The goal is to calculate the breadth of the mixing regions of
velocity by and of the temperature b, as well as the axial
Tp(x) - u ENE
-éi—l————i and %a( ). For the calculation, the differ-
Yy %
ential equations are used which for the Jet center read

functions

-ul

Iy 2/~ 2_
p(i - u o°(u - u o“p
T 1) = €(x)2 5——£——§——£l + E(ﬁ - u.)———
ox dr dr2
(1)
_ 2 2=
22p3 = Be(x)2 bé—%-+ ﬂé—g
X or or
with *
€(x) = Kby(x) ('ﬁA(x) - ul)
also, the conservation formulas
momentum
" sas ar xo? (2)
puifua - u\r = u, - u
0 ( l) pouo( ° l) 2
and heat

bs
Jr PUdr dr = pyuyd, r03/2
(0]
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In conformity with the almqst similar behavior of the flow in the
transition zone described above the following proposition is made:

u -1y (ﬁA(X) - U1)¢(ﬂ)§ 7 ﬁ/bl

(3)

(Y}
!

= 3, (x)o(n*); n* r/b2

In other words, it 1s assumed that 1n the whole transition zone
the distributions over the breadth of the mixing regions are represented
by the asymptotic distribution function

e;CUOW)e and e"(.don*)2 ' (L)

The constant o, can be determined by experimental calibration, 5
Approximating the experimental distributions by the function (1 - n3/2)
gives (cf. part A).

c=1.81 - (5)

(6)

and

are obtained from (1).

The first equation defines the mutual correlation of the axial
u, - u
A 1

Up = U1

of the axial function

functions < and <8A/6°); the second describes the variation

Uy - Uy
ﬁ;_:—ﬁI with the nozzle distance x/ro.
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The conservation formulas (2) give by reason of (3)
'.E‘—-1 —se = e - - . l : . l

bl/ro = 1+ 9 /T 1/ (32 - zi>1/2 [Ou_ U’l(ﬁ 1>(II) . 5‘1]2.

with the coefficients

any =2 [ q’Z"_ | dn
(11) A [1 +(130/T])(13A/190)*]

(7a)
(1) = 2 / ) L/ a
0 [1 +(ab/Tl>(qu/ao>¢] k
(where ¥(n) = cpé?)-_- q’(ﬂ*))
2
Besides
bafro = : 1/2 /= - 1/2 1/2
Y g OV PR
Yo \uo -
with the coefficients
g -2 [ Py an
i [ i

(o)

(1] = / [1 o °/$3E"A/’9 q):l

(where, with 7% = rfby
V(n*) = cp(n* boby) = q>(n)>

In complete generality, the solution of the described egquation
system (6) and (7) still presents a difficult problem, which is largely
due to the calculation of the integrals by which the coefficients of
the breadth of the mixing regions are represented.
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By contrast, the solution for the asymptote (very great nozzle
_ dis‘tances) is read:Lly indicated.

With

(I)=2/' on dn = 1/00, 1] =-2/°°q,n* dn*—_—l/croe
0 0

t
we ge o 1 1 (u_0>1/2 1
l/ ’ (l + 9 Tl>l/2 %% \"1 <ﬁA - u1>1/2-
Y -
(8)
by fr ¥ = L (52)1/2 =
T (1 . ‘90/'-['1)1[2 0,2 \%q <5A/ﬂo)172

The differential equations (6) give then immediately
-u
1
i) =
(54 {l_q> (9)
and

e 1 111 (%\Y2 m 1
/° K 6 g, AR

s e

With the nozzle distance x /r0 as independent variable

. 61/3 (% )1/ 3
b1 /7o ¥ (1 Fe 73 k1/3 573 (ﬂ)g 75— (%/%9) 1/3

Yo
b2/b1 % \Es

(10)

up\1/3

(‘—’:A - “1) ~ 1 1 1 (Q) 1

Uy - uy) " (1 + 60/'1'1)1/3 x2/3 (6%)2/3 (uo R ulfﬁ (x/ro)2/3
o
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( A/%Q)IN (Eé";_5%> - | | (10 con'i)

Consequently, greater temperature differences for the asymptote
mske themselves felt by the factor - 1 773- It implies that’
(l + '3'0/Tl>
the breadth of the mixing regions increases slower at greater tempera-

ture differences and that velocity and temperature decrease considerably
more.

The asymptotic solution is at the same time to be regarded as first
approximation for the general solution. Comparisons with better approx-
imations indicate, however, — for example, in the theory of small temper-
ature differences (cf. part A) — that the asymptotic solution still
represents no satisfactory approximation,

To gain a second approximation, 1t is logical to continue with the
equation system (6) and (7) on the approximete assumption that

b2/b1 = v@f(which holds rigorously for asymptotic conditions).

For E = 2 — this value 1s obtained by experiments as will be
shown later — the coefficients of the comservation formulas can be
indicated analytically:

(11) = 2 %(ﬁ-A/Tl)B - 5 (Sa/T1)% + (3a/11) - Zn(l + ﬁA/‘I‘l)

o (/)"
(1) = _2_ (5A/T1) _ Zn(l i 5:“-/Tl)
0,2 (EA/T]_)Q
1 5(%m)® - (8afr1) + (2 + Fy/7p)
| .[II] 002 (5A/Tl)3
_ (1 + T,/1q)
E[] 0,02 ( Q“A/T:L)

P

Introduction of the functions thus obtained for bl and b, in (6)

gives a system of ordinary dlfferentlal equatlons which, however, can be
solved only approximately.
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But a second approximation in analytical form can be obtained, if
one limits oneself to the asymptotic coefficients of the conservation
2

formulas which read:
o
2 f ¢°n dn =
0 o)

2/(; on dn = 1/cro2

[¢]
IT 2 * gnx = L L
1] /;Wn ™= 358
00

(1I) 2

o+

g

(1)

(11)

1]

1] 2/0 on* dn¥ = 1[0 2

This solution seems to represent an adequate approximation, We get

1] o = (1 + al/T])'l/z Ty -lul 1/2 ryy - up/dp - ull ul /2
/T (BB [ e 2 @‘
with (II) = %012, (1) = 1/0,°
° (12)
b2[To = - 1/2 y 1/2 7
(14 o r)H/2 (34%) e Rt
uo uo - ul uo

. _ 1.1, 1 = L

with [II] = 5.7 1] .

With these functions, the differential equations (6) give: For

= Uy =g
the correlation of <18A /6o> and —_——

Uy = W
<5A/a>=_1_ : 1
°/ T E g - Uil o Ul
—l——--l+:£'u“)-ullnuﬁ-u:L o~ W + &
<ﬁg - Uy 6 uy (ﬁA‘u1)+2 uy E
. Up = Y3 U, - uy U, - Uy
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The integration constant was therefore so determined that

- up - u
(Fafoe)= 2 zor (uﬁ—uﬁ -

U - 01

vz 1 '“1>1/229< 1 )
8 o, Uy uy ;1/2 _ ;(1)1/2

(1)

Ty - ug\ '
The dependence of the axial function < u) on the .noczzle

distance x /ro reads

=i

x/r0_=

1
(1 + 60/1'1)1/2

1 1
<§_37§-§(_1)7.2_> +x--K/ro

where (ﬁA - ul)
t = U = YW1

(?é_:_2l> + 2—_21___
Up = U1 U — Y1

The integration constant being so defined that x/ro =X - K/ro

uA - ul
for | ———=] =1 (boundary of core).
u, - u

The two empirical constants K and E appear in the theory;
K = 0,010 for asymptotic conditions (cf, part A). The constant E
equals 2 according to the experiment.

The structure of the mixing field for

- u :
S = 0.5 0.7 0.95
8o/Ty =. 03 0.75; 1.5

obtained with these constants is represented in figures 13 to 25.

On experimental data the measurements by Pabst (reference 2)' are

“'available, He measured the diffusion of a hot air jet of = 300° C in

the transition zone and a relative speed of % 400 m/sec for 18, 101,
and 107 m/sec outside velocity - o : T

U -y

9 [T1 % 1.0; % 0.95; 0.7Th; 0.53 .
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Pabst's measurements of the velocity and temperature distributions
over the breadth of the mixing regions were very complete. His measure-
ments at the last three sections (x/D = 16, 20, and 24) are reproduced
in figures 26 to 28, to which we have added the theoretical distribution
functions for the asymptote '

~(on)®
e N~ r/bl

and
v = gt/E (E = 2);

0 being defined accordingly. It is seen that the theoretical distribu-
tion functions reproduce the experimental distributions quite closely.

The significant result

1s quite plain.

The check of the theory on the experiment involves mainly a compar-
ison of the theoretical and the measured axial functions

T,(x) - _
—ﬁ;—.;l—ul‘ and Ip(x)f So.

Pabst's average values are represented in figure 29. Figures 30 to
32 contain the comparison of the theoretical and experimental decrease
in velocity along the Jjet axis, the constant x =- K/ro of the theoret-

ical curves being defined accordingly. Surprisingly the measurements on
the whole indicate a greater decrease in velocity, although this was to
be expected since, as a result of the friction at the inmner and outer
nozzle wall some loss of flow must be reckoned with, which stipulates ap
effective radius different from the geometric radius. Figures 33 to 35
show the comparison of the theoretical and experimental temperature drop
along the jet axis, with the constant of the theoretlcal curve agsain
properly defined. The reservations regarding any accldental loss on

heat flow disappear. Even so the measurements indicate a fundamental
departure in the sense that the experimental decrease is flatter; however,
this difference should raise no objection to the theory since the tempera-
ture measurements along the jet axis seem unfortunately to be faulty.

This is seen fairly plainly in figure 29 where, with increasing distance
from the nozzle, the curves of the velocity and temperature drop approach
one another and then even intersect. By contrast, the experimental dis-
tributions give E = 2 somewhat plainly, which, in other words, means

. [ — T R 1 [T "
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that the temperature exchange is greater than.the velocity exchange -
- a )
(according to theory ('8A/ﬁ ) -A————l> is to be expected for greater

E\up - ug

nozzle distances) _

To be sure the described behavior is due, to some extent s to the
friction losses but not .enough, according to preliminary calculations,
to explain this difference. " _ )

II. Calculation of Mixing Region Structure

1. The differential equations describing the diffusion of a hot air
Jet in the transition zone read (cf. part A):

ar'éﬁ(’& - uy) BrpV(Ti - ul) _ d - Bl(ﬁ - ul) . ' | op
™ + = = e(x) 5o 7P = + Er(u - ul) =
drpuf , Orpvh d a(pd)
= Be o\pd)
ox o 0 &7 %
éﬂi. + _a_I'V:_ =0
Ax or
with
e(x) = Kby (x) (Ga(x) - w)
or '
LI L UL S T L L VIRV
ox or dr or or
ra 203, ﬁ.@:Ee(x) N VL
X r or or

For the jet center (¥ = 0!)

Bﬁ(ﬁ - ul) 1 . B(u —ul) Tel
T Y _(x) 1im * & {rp + Er(d - u)—
ox e(x r—30 T oOr i or ( 1)ar
5 E’E_—. E€(x) 1lim 190 Ur _a_p_s
> a5 TR
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Considering that the first derivatives with respect to r dlsa.ppear :
for the jet center, one obtalns

! B8 - w) c(x)24p —152(;-1 o + E(T ] uy) fﬁ

dx dr . dr?
ﬁ?:EG(x)E 5§+ 5_§g (15)
with
¢ (x) = Koy (x) (a(x) - u)
If one puts
T = const, 1

according to p X T = constant, the equations read

u - ul 2 1
_ %1 +35/T1 _ . 1 aia-ul) . a(1+?57TL)\{
1 —t (x)2 — + E(T uy) s

ox 1+ ﬁ/Tl dre dr
a 1 +v/T1 - Ee(x)2 1 +25/T1

ox or

For computing the mixing field, the conservation formulas are
employed again:

f 5

pufd - uq\r dr
, o)
heat (17)

b2
pujdr dr
0

momentum

pouo(uo - ul) r02/2

2
PolYg S To / 2
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or
(u-ul uo(uo-ul) 2/
Jo 1+19/T1 1w fm
(18).
— uo'ﬁ
f W e _toto_ 2/p
o 1+ wS/Tl 1+ 130/T1 -
2, The law of similarity is applied
u - ul = I_IA(X) - ul)q)(n), n= I‘/bl(X)
(19)

3,(x)o(n¥), n* = rfv,(x)
or

= 3,099(n By fop) = F,(0)¥(n)
hereby it is to be noted that

(3/3x), = (3/3x), - (a/aq‘)q%l
(3f3r), = (a/an)i_l

For the differential equations (16) we get

(s - w)e \
<(1-1A - ul)q’ N u1> B<1 +(’9A/TJ)"‘/

& | aE(l G )ﬂ?

U, - U . +\ 7

( A llq) + E(ﬁA - ul)q} S EAZZ 1
r

= Kot - )2y 7 Ty o

N5 Tow Sgw T l[ae T—Sgw T w\'
(e .
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or, bearing in mind that ¢ =V =1 at the jet center
' Sale!
Yo — U

AT +Bol
() ) B

Uy - ug ' /uA - uy d2cp
B Kbl<uo - ul> 1 +(19 T]X13 /G‘\u - ul>dn

1

2*'

'qO

_ d2< 1 > o
ST o T V3
Uy - W an? ' b1
n=0

(aA/a
<<ﬁA - ui) ,_m B 4 + (3 /Tﬁ(ﬂA/ﬁ )

42 v |
Up -u1> ( /%> <l +(ﬂof]]2)(3A/ﬁo)‘V> — biJ

Observing, for examlale » that

R G UYIN T S SR ARV
dn [1 +<30/T]>(5A/«30B2\ / X / >dnb

de[l +Cot Al )Y] 3 (30 fra(3a f25) eyl
an? : EL+(19 T]X”A/‘S :I an® bl

n=0
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and )
- av_ap(nvy) | By dg
“dn o b2 an

2 .
& _ < b_l) &
dne b2 dnz

we get

W -w) noa) (B ‘
(@) -“1>{[1 ¢ o/w@z/w <[1 T o/ﬁm/ﬂ] }

_ Ty - : 1 /ﬁA'ul 1 4%
2Kbl<uo - ul>{|:1 + (‘90/T]X5A/’So)] \ug - u1>b12 an2

n=0 }
corresponding to

/Ty - up L% (aA/ao) (aA/a )(6O/T1)(1§A/J
< Uy - u1> - u1>{[1 + O/Tl) A/a ] |:1 + 130/'1‘1) yA/a ]2 }

- Ty - u (Ba/ ) 1.4 -
2‘E?Kbl<u - ul>{ [ +{9%/T1)(a/%)] P2° dnq)\n=0

a0z /%) 1 df
[+ Go/m)(F/%)]2 ©2® 47|

(The accents (') signify derivatives with respect to x.)

n=0

( (ﬁo/ﬁ"l IS)A/“J 1 dch
u, - u

[1 + o/TJ)(ﬂA/*’ )] % e an?

- Hence

6, - u Cu)" (BT B/ - T |
@-ofey SRR
{1 (oo/2((a %) @}
o [1 +(\90/T]X-5A/ o) |\p2 |

21S.vuo—ul d-q2
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(B e - ey
Dividing the first equation by the second gives
2oy pemEs)
.(SA/‘%)' [1 +( O/T]XﬂA 0]
<bx) ﬁA;ﬁul [1 +( T?%A A/?s ]/bl>
Bot] oy iy ol
(g B arm ] = Cu [ /il
finally ) '
G R

The elimination of (EA /’30> from equation (19b) by means of this equation

leaves

a x/ro

)

<ﬁA'u1 !
b .uo—ul uo—ul

NI
R

@) T

Equation (21) gives the mutual correlation of <

(5A/“90) along the jet .axis'.

Equation (22) contains the dependence of the axial function (

on the nozzle distangé._

1
(22)
a2
dr]2
=0
Ty - u
A—_l_> and
uo - ul
Uy -1y
U = g
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3. The application of the equation of simllarity (19) to the
equatiops of conservation (18) gives:

’ 'm‘oméntum"
f u—ul!dr_uo!uo-ulz /
1 +§§O/T1 1 +,90/T1
similitude
B-w = (5 - w)eln), = r/bl
§ = 9,(x)y(n)
It yilelds

/o Jle ; /;;)(cp 71":}3 (5a - uy)o01®n an = YoM - M1) 2 /2

or

5 { <f bt /Qﬁ/mﬂ )

! ﬁlA-uJ, Mg 11
_ul\u -u <f l:l+(13 /Tl)(ﬂA/ﬁo)\IfJ > uo‘u11+’30/T12

finally

(bler)a (2 : zﬁ{ uou; ul(j‘;‘ :‘1:> </0m E +(0o/ ;2)1(15.1;/ %) “’] dn> +

ul = Al dn| = 1 ___l_
Q(/; |:1 +(§O/Tl)(3;/ﬁo)w] > é 1+ 9Ty
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From it follows _
bl,ro - 1 / 1 ]* 1
1/2 /4, - uq\l/2 - u -1 u 11/2
(1 +90/T1) ( ! [uou 184 i)(n) ! (I)] /
0

U - U1 o \uo -

with the coefficients

(I1)

” /'” ¥n_ an
0 [1 +(130/T]_)(6A/60)W]
(23)
(1)

e o1 _ an
L [1 + (ﬂo/T]Xm‘)A /%)ﬂ

The asymptotic coefficlents are

(II)=2f o7 dn; (I)=2/mcpndn
0 0

with
2
-{ 0,
p=e ( oﬂ)
Hence
1
(r1) =+ 1. (1) = =
2 g2’ 0,2
heat
-4 -—5 uo‘g
__.____..__u — r dr = -——-——-O r02/2
0 1+13/Tl l+130/T1
gimilitude
9= y(x)e(n*); n* = /by
u = ul = (EA(X) - ul>\b(ﬂ*)
with

¥ (%) = §D<ﬂ*b2/b1) = o(n)

-
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The result is

< (uA ul @ + u1>'8A* ﬂ* anx = ugd, r02/2

o [1+( o/TIX:'SA/'a ) ¥] 1+ /Ty
be/hl {(A/B) uﬁ :2 = ul(/ E +(1307\Tv:*aA/ao )?] . > i

%(51\/60)(‘/0 [ ( /$§6A/ﬂ0)¢] ) =% 5.+ J’.;o/Tl

Hence

1

e G [ e ) 2]

bolr0 =

Up U - g

with the coefficients

T o¥n* . an*
[ ] f [1 +(30/ T1Y 34/ %) ]

(2k)

[I] = 2/; [1 +(,30/$]3<3A/~80) ﬂ dn*

The asymptotic coefficients are

o
[IIJ = 2/ p¥nx ane; (1] = Efm on* dn*
0 0
with
Q = e~ (To)?
¥ = e=E(don*)?
which with E = 2 give

[z1] =%E§2—; 1] - #
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4, Asymptotic solution (first approximation)

The asymptote (very great nozzle distances) follows from (23) and
(24) as ' :
N 1 1 ug \L/

P fro 72 5 (=)
(1 + 9g/m)* (PA‘_ul>l v

Y - ™M

2
1 /cro

(25)

N i 1/2

b2/1'o ~ (l N 13O/Tl>1/2 <'I§A/39-O>1_/2 <11i—§> l/Uo

Hence <ﬁA ) ul>l/2
0, - u
(BA/%Oille‘

bg/bl =
Insertion in the differential equation (21) gives

G==) (2=
Uy -~ W3/  1\Up = ug ' (26)

(afe)" B (% /%)

or .
- I—IA - ul
(o) = 3 ()

From (22) follows further
ujg

'_dgx{ro! _ 11 (u0>1/2 1 1 U - Uy 1
2 K

d(‘“—ﬁi . E) 1/ % (2+ ""o/Tl)lﬁ (ﬁA - u1>3/ 2 4%

Up - an?
=0
or
X[To = i1 1 1 - <u_3\\l/2 W -1
o K 3 g, 222 (1 + %/Tl)lfe ul) ug - ug MB/E
dn2 Uy = ug
n=0
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With
12
q) = e-(don)
2 1.
dJ;' _-2002
dn I
n=0
this results in | '
le o 1 1101 (w2 w 1 (27)
" (2 ﬂb/Tl)l/z' £ 8o/ wow (ﬁﬂ" up)3/2
' YW ~ U

5. (Second approximation)

With the asymptotic coefficients the result is

1 1 1
ra =
Uy - Uy Ug | \uo -u Uo
where .
1.1, -
(11) = 5 ;2-, (1) = ;0‘2' (28)
bofo - 1 s = 1 s _ 1
(1 + %/T1) ("A/‘So} [ao - u1<uA - u1> I} + u_{m:‘l/e
U Yo -\ Yo
where

With these functions the differential equation (él) reads

d(ﬁA ! ClA - u1>2 o - UifM - W\ .y, U1
Up - U3/ 1 \U - U \Up - Yo

d(i—’A/eo) E (5,:./'30)2 uou; ul\/,_ﬁ: : ::) [II] + z—i‘[ﬂ
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Separation of the variables produces

a

S 92 JUA — a2 4L - u ST

(A/o) A 1) Uo 1;(A U,
o - ul 7) 2uo-ul

_ YomW 1A%y T _
(3nf%) 1 Uo 3 \uo -~ ug uod<uA-'u1)'
o
Uo

When the integration constant is so defined that

(%/%)

1 +then

1

1 1

<:§A /‘90)

E A - ug St
1 _1+lu°'ulzn(uo‘ul>(l+“6“11)+1
<uA'ul 6 u Ty - ug uy E
uo - ul + 2
Yo - N1 U = U3
(29)
The differential equation (22) gives
d(x/ro) . 1 11 1 y
fp - u 1/2 2K - Ta - 5
g/ AL (1 + 60/1‘1) g - 1y ul)(n) + B1) 1/
'Llo —U.l Ugp \uO - U Up
< Uy -y up >
+
U -ul)  u -w/f -1
<ﬁA - u1)5/2 \2002
U - 11
Qor

_ <ﬁA'ul+ U >
d(x/ro) 1 11 1 - Up - U o = W1

d<ﬁA - 'lll> (l + ’BO/T1>1/2 )I K O'O TlA - U.l 5/72
U = U Yo = U1

X
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<u—A—-:"E£> Yoy Y1 dEA;‘“l
1 o L <uo"ul +'uo".u1> Uy ~ up

\/i.“o_"'_u._l | e\ ﬁA‘ule_'_a‘ul fon - W 1/2
2 Yo Uo - u1) [Auwo - u1 uo - up\uo - wp

Transforming

U
_ oL
<uA‘ul>= (uo—u1> E oo A'u1>2+2u1 fA'“l)
Uy

u, - v l-g2 ? Uy - up \\ug - 4y uy \Up = g
Y - W
[ - w . (a2 2
uy - Uy _2(2 uy > 3 (uA"ul> R
B o - u 27 - T 2
ae o) 1(1-§2) U - 11 (1-g2)
gives with
a = 1 and B =~ = L 1 1 1
Up - Ul (1 +85/T1)H/2 ¥ K % \/ 1% -u
g,
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I
H
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'_l
'
uve
[AV]
~
~
o
[Ta, 3

I
Mo
£
|
to
e
e
+
Wi
ur
W
—~
+
O
0
5
[43]
c+

_ U, - u
Identifying the integration constant for <—£;———£ =1 by
Yo - W

x/ro = x - K/ro (boundary of core) gives

x/r = 1 1L v2 1 <EQ_:_31>1/222 v
TR
1 1 1 /11 1 i
<§1/2 g(1)1/2> T3 372 15(1)3/2>J'+x K/ro
where )

=)

§= _ 110 - ul
u + 2__L
=

Translated by J. Vanier
National Advisory Committee
for Aeronautics

(30)
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Figure 1.- Breadth of the mixing region of the velocity plotted against the
velocity along the jet axis.
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Figure 2.- Velocity decrease along jet axis.
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Figure 3.- Breadth of the mixing region of the temperature plotted against the
velocity along the jet axis. '
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Figure 4.- Temperature dr'op along jet axis plotted against the velocity decrease
along the jet axis. '
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Figure 6.- Breadth of mixing regions of the velocity and the temperature.
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Figure 7.- Asymptotic distribution function for outside air at rest (uy = 0).

_ L2 T T T
1:.—73 Uy -(67)? s

. —

_ s (u//u0)2/3
\ o=042 71(/‘, 7 -(E;——U/)’T

8 \\ 0

6 \\

4 \\\

) .
2 \
0 I e
0 2 .4 .6 .8 10 2 /4 6 18 20 a2

677

Figure 8.- Asymptotic distribution function for outside air in motion (ul # O).
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Figure 9.- Comparison of theoretical and experimental distribution function.
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Figure 10.- Comparison of theoretical and experimental. velocity decrease
along jet axis.
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Figure 11.- Comparison of theoretical and experimental temperature drop

along jet axis.
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Figure 12.- Comparison of theoretical and experimental relationship between
temperature drop and velocity decrease.
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Figure 13.- Velocity decrease along jet axis for small density differences,
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Figure 14.- Velocity decrease along jet axis for greater density differences.
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Figure 15.~ Velocity decrease along jet axis for greater density differences.
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Figure 16.- Velocity decrease along jet axis for greater density differences, -
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Figure 17.- Temperature on the jet axis plotted against the velocity on the
jet axis.

Figure 18,- Temperature drop aloﬁg jet axis for small density differences,
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‘Figure 20.- Temperature drop along jet axis for greater density differences.
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Figure 21.- Temperature drop along jet axis for greater density differences.
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Figure 22.- Breadth of mixing along jet axis for small density differences.
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Figure 23.- Breadth of mixing along jet axis for greater density differences.
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Figure 24.- Breadth of mixing along jet axis for greater density differences.
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Figure 25.- Breadth of mixing along jet axis for greater density differences.
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Figure 26.- Velocity and temperature distribution over the breadth of the
: mixing region.
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Figure 27.- Velocity and temperature distribution over the breadth of the
mixing region.
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Figure 28.- Velocity and temperature distribution over the breadth of the
mixing region.
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Figure 29.- Decrease of velocity and temperature along the jet axis.
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Figure 30.- Decrease of velocity along the jet axis.
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Figure 30a.- Comparison of theoretical and experimental velocity decrease
along the jet axis with introduction of the effective nozzle diameter.
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Figure 31.- Decrease of velocity along jet axis.
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Figure 3la.,~ Comparison of theoretical and experimental decrease in velocity
along the jet axis for effective nozzle diameter,
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Figure 32.- Decrease of velocity along jet axis.
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Figure 32a.- Comparison of theoretical and experimental velocity decrease
along the jet axis for effective nozzle diameter,
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Figure 33.- Temperature drop along jet axis.
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Figure 35.- Temperature drop along jet axis.
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